CÓMO SE PROPAGA
El sonido es una vibración, como tal, se puede dar en cualquier medio material, sólido, líquido o gaseoso como el aire. En cada medio, se propaga a una velocidad diferente, principalmente en función de la densidad. Cuanto más denso sea el medio, mayor será la velocidad de propagación del sonido. En el vacío, el sonido no se propaga, al no existir partículas que puedan vibrar.
En el aire, el sonido se propaga a una velocidad aproximada de 343 m/s (metros por segundo). Esta velocidad puede variar con la densidad del aire, afectada por factores como la temperatura o la humedad relativa. En cualquier caso, para distancias de decenas de metros las variaciones son mínimas.
En el agua, un valor típico de velocidad del sonido son 1500 m/s (el agua es más densa que el aire). En el agua, la densidad varía mucho en función de factores como la profundidad, la temperatura o la salinidad y sí hay que tenerlos en cuenta. La propagación del sonido en el agua, es el fundamento de los SISTEMAS DE SONAR utilizados en barcos y submarinos para detectar obstáculos u objetivos y envío de datos codificados. Para aplicaciones sonar las frecuencias que se utilizan corresponden a los ultrasonidos.
En materiales metálicos, el sonido se propaga a velocidades superiores a las anteriores, por ejemplo, en el acero el sonido se propaga a una velocidad en torno a 5000 m/s. En materiales sólidos se utiliza el sonido y las propiedades de reflexión para detectar fallas estructurales y grietas, sin necesidad de tener acceso a toda la estructura. Por ejemplo en una viga, bastará con acceder a una de sus terminaciones para poder conocer su estado, empleando ultrasonidos y ecogramas.
Divergencia esférica: el nivel de presión disminuye conforme el sonido se propaga. Cuando el frente de onda es esférico, en la mayoría de los casos, el nivel de presión cae 6 dB por cada vez que se duplica la distancia. Estas se llaman pérdidas por divergencia esférica. Si por ejemplo se mide el NPS que produce una excavadora a cinco metros y este es de 100 dB, podremos decir que a 20 m el NPS será de 94 dB, y a 40 m serán 88 dB.
Cuando el frente de onda es plano, no hay pérdidas por divergencia. Un ejemplo de este tipo de propagación se da en la propagación del sonido por el interior de una tubería.
Arriba
Reflexión, transmisión, absorción y difracción
Reflexión y transmisión. Cuando una onda acústica incide sobre una superficie plana que separa dos medios, se producen dos ondas, una de reflexión y otra de transmisión. Cuando la inclinación onda incidente es superior a una ángulo dado (ángulo crítico), sólo se produce onda reflejada. Cuánta energía pasa a formar parte de la onda reflejada y cuanta pasa ser parte de la onda transmitida, es función de la relación de impedancias acústicas entre el primer y el segundo medio. La impedancia es la oposición que hace el medio al avance de la onda, algo así como la "dureza" del medio. Cuando se pasa del medio aéreo al acuático, casi toda la energía se refleja, debido a que las impedancias son muy dispares. En cambio, entre una capa de aire frío y otra de aire caliente, casi toda la energía de la onda acústica pasa a formar la onda transmitida, ya que la impedancia acústica es parecida.

Ondas que se generan al pasar de un medio a otro
Absorción. Una onda acústica implica el movimiento de partículas, las cuales rozan entre sí. Este roce consume parte de la energía, que se convierte en calor, disminuyendo la energía acústica total. La pérdida de energía, o absorción, depende de cada frecuencia, siendo generalmente mayor a altas frecuencias que a bajas frecuencias.
En medios fluidos como el aire o el agua se pueden dar los datos de absorción en función del camino recorrido por la onda acústica. La siguiente tabla muestra la absorción del aire a 20º centígrados y humedad del 70% para distintas frecuencias, en dB por kilómetro.
Frecuencia (Hz) | 31 | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | 16k |
Absorción (dB/km) | 0.2 | 0.3 | 0.7 | 1.3 | 2.6 | 5.3 | 11.0 | 22.0 | 53.0 | 160 |
Como se puede observar, la absorción es mucho mayor en las altas frecuencias que en las bajas. Por ejemplo, una onda acústica de frecuencia 500 Hz que recorre dos kilómetros sufre unas pérdidas por absorción del aire de 5.2 dB. Para calcular el nivel real, habrá que tener en cuenta las pérdidas por divergencia esférica.
También existe otro parámetro de la absorción, y es el que se usa en las especificaciones de materiales acústicos. Se suele llamar "coeficiente de absorción a", es adimensional y sus valores van de 0 a 1, siendo cero equivalente a mínima absorción y uno máxima absorción. Este valor se usa principalmente para calcular los tiempos de reverberación de salas. El coeficiente a de un panel acústico depende principalmente del espesor, porosidad y forma que tenga.
Difracción. Se entiende por difracción cualquier desviación de la propagación en línea recta debida a la presencia de algún obstáculo en el medio homogéneo. Por ejemplo, un muro que separa una zona residencial y una carretera, ya que no se interrumpe el medio de propagación, el aire. De forma parecida a como actúa la luz cuando se encuentra con un obstáculo, actúan las ondas acústicas. También se puede hablar de sombra acústica creada por un obstáculo. La sombra creada es distinta según la frecuencia de la que se trate.
Así las altas frecuencias "proyectan" una sombra más definida que las bajas frecuencias. Es decir, si entre el oyente y una fuente sonora que están en campo abierto, se sitúa un obstáculo, por ejemplo se levanta una pared de dos metros, el oyente percibirá una reducción de la intensidad del sonido total. Sin embargo, esta reducción será poca a las frecuencias próximas a 20 Hz (bajas frecuencias) y mucha a las frecuencias próximas a los 20 kHz (altas frecuencias), alrededor de 10 dB mayor. En este caso se podrá decir que las bajas frecuencias sufren más difracción que las altas, en otras palabras, su trayectoria se ha curvado más, rodeando el obstáculo.

| Frecuencia | Atenuación del NPS | 250 Hz | 14 dB | 500 Hz | 17 dB | 1000 Hz | 20 dB | 2000 Hz | 23 dB |
|
Datos de un ejemplo real. A la izquierda la fuente de ruido, a la derecha el oyente. |
Los efectos de difracción pueden tener importancia para micrófonos, altavoces, para la audición humana (difracción sobre la cabeza, que hace de obstáculo), para el diseño acústico de recintos... Las sombras acústicas creadas por obstáculos son muy usadas en la lucha contra el ruido.