EQUIPOS DE AUDIO

ALTAVOCES (1/2)

Definición y tipos de transductor

Características

Configuraciones

Otros elementos

Usos y clases

En este apartado se aborda el último elemento en la cadena de audio profesional, encargado de convertir la energía eléctrica en energía acústica: el altavoz.

DEFINICIÓN Y TIPOS DE TRANSDUCTOR

Un altavoz es un dispositivo capaz de convertir energía eléctrica en energía acústica que se radia al aire.

A este dispositivo se le llama transductor electroacústico. La transducción o transformación de energía, se hace en dos fases. El modelo teórico de un transductor electroacústico, se basa en un transductor electromecánico y un transductor mecánico-acústico. Esto significa, que se estudia por un lado la transformación de la energía eléctrica en mecánica, ya que se genera un movimiento,  por otro lado se estudia la transformación de la energía mecánica en acústica, ya que el movimiento genera energía acústica.

El transductor electromecánico se llama "motor", por el movimiento que genera. Este movimiento se traspasa al segundo transductor, el mecánico-acústico, que se llama "diafragma", aunque también puede ser una bocina.

En los apartados que se refieren a los anteriores aparatos de la cadena de audio (procesadores, mesa de mezcla, etapa de potencia), se habla principalmente de dos unidades: tensión y corriente que varían en función del tiempo: e(t), i(t). Esta energía es transformada en energía mecánica en el transductor electromecánico, ahora se miden las magnitudes fuerza y velocidad: f(t), u(t).  Tras pasar por el transductor mecánico-acústico, se pasa a hablar de energía acústica, con las magnitudes presión y caudal: p(t), U(t). 

La energía acústica, se radia al aire, se transmite a través de este y la percibimos como sonido. Estos conceptos están explicados en la sección Nociones de Sonido, en el apartado Nociones de Acústica.

Frente a la aparente simplicidad de un altavoz, los fenómenos físicos en los que se basa son complejos y variados, además admiten múltiples configuraciones en función de la necesidad a cubrir. Por este motivo, se pueden clasificar de varios modos que se enumeran a continuación.

Clasificación en función del transductor electromecánico:

Electrodinámco, dinámico o bobina móvil: una bobina móvil inserta en un campo magnético creada por un imán permanente, se desplaza empujada por la fuerza electromotriz debida a los cambios de corriente en su interior. Esta corriente procede del amplificador o etapa de potencia. La bobina está pegada a la cúpula, que puede ser todo el diafragma o sólo la parte central. Son los más comunes en audio profesional y prácticamente los únicos en audio doméstico.

Partes de un altavoz electrodinámico de bobina móvil

 

Altavoces de bobina móvil

En el altavoz central de la figura se aprecia la cúpula del diafragma pintada de negro. En el altavoz de la derecha se ha desmontado el imán permanente. El altavoz derecho está completamente montado.

Electrostáticos: se basan en una placa cargada eléctricamente que ejerce de diafragma y se mueve por la fuerza electrostática que se produce al variar la carga de las dos placas entre las que se encuentra. Se trata de un doble condensador, donde la placa central es el diafragma. Destacan por ofrecer una respuesta en frecuencia amplia y plana; por otro lado son extremadamente voluminosos, necesitan de alimentación de la red y electrónica adicional, además son muy delicados, por todo su precio es muy elevado. Los altavoces electostáticos son de radiación directa.

Altavoz electrostático de la marca Quad.

Piezoeléctricos: se basan en la propiedad de los materiales piezoeléctricos de contraerse ante impulsos eléctricos. Tienen un gran rendimiento, sin embargo la superficie de radiación es muy pequeña por lo que son usados en dispositivos de alta frecuencia de audio. También se usan en muchas aplicaciones que requieren frecuencias superiores a las de audio, como dispositivos de sonar o de ecografía.

Tweeter piezoeléctrico

Otros tipos menos desarrollados son los siguientes: Magnéticos, Magnetoestrictivos, Neumáticos o Iónicos

Clasificación en función del transductor mecánico-acústico:

De radiación directa: el diafragma es el elemento que radia directamente al aire. Son los más comunes al ser más sencillos que los de radiación indirecta.

Altavoz electrodinámico de radiación directa

De radiación indirecta: una bocina adapta la alta impedancia del diafragma a la baja impedancia del aire. De este modo se mejora el rendimiento del altavoz. Es decir, se transforma más energía eléctrica en acústica, si no se usase la bocina, se emplearía la misma energía eléctrica obteniendo menos energía acústica. Son más aparatosos y se usan en ámbitos profesionales de sonorización de grandes recintos o montadas en grandes cajas acústicas. Los altavoces de radiación indirecta está compuestos de dos partes, la bocina y el motor de compresión. El motor de compresión es en realidad un altavoz electrodinámico de bobina móvil, aunque tiene algunas peculiaridades, como una cámara de compresión, un diafragma pequeño y ligero y la estructura para ser anclado a la bocina.

Bocina sola (izquierda) y con el motor de compresión montado (derecha)

Las bocinas de la figura superior son del tipo exponencial de boca rectangular.

Clasificación en función del margen de frecuencia al que se dedican:

Banda ancha: son altavoces que cubre la una banda extensa del espectro de audio.

Bajas frecuencias: woofers y sub-woofers. Son altavoces que cubren el margen de frecuencia por debajo de los 400-700 Hz. para woofers y por debajo de los 80 Hz. para los sub-woofers. También se habla de graves y sub-graves. Los woofers no llegan a cubrir con buena respuesta la zona de baja frecuencia próxima a los 20 Hz. por eso se desarrollan los sub-woofers que trabajan exclusivamente esa zona reforzando la respuesta en baja frecuencia.

Frecuencias medias: mid-range. Cubren el margen de frecuencia que va desde los 400-700 Hz. hasta los 3-8 KHz. Esta es la que se suele llamar banda de medios.

Altas frecuencias: tweeters y ultra-high-tweeters. Cubren las frecuencias por encima de los 3-8 KHz. para los tweeters y por encima de los 12-14 KHz. para los ultra-high-tweeters. Ambos no llegan mucho más allá de los 20 KHz. Esta zona de frecuencias es llamada también banda de agudos. Los tweeters tienen dificultad en llegar a cubrir con buena respuesta la zona de frecuencia próxima a los 20 KHz. por eso se desarrollan los ultra-high-tweeters que trabajan exclusivamente esa zona reforzando la respuesta en altas frecuencias.

Distribución aproximada de las bandas de frecuencia habituales

Arriba

 

CARACTERÍSTICAS

Respuesta en frecuencia. El concepto está explicado en el apartado Equipos de audio > Calidad de audio. La respuesta en frecuencia es uno de los parámetros principales de un altavoz, junto con la potencia. Por razones mecánicas y de diseño, un altavoz sólo no puede cubrir todo el margen de audio, por lo que se construyen altavoces especializados en reproducir ciertas bandas de audio: sub-graves, graves, medios, agudos y súper-agudos.

Gráfica del módulo de la respuesta en frecuencia de un altavoz montado en caja cerrada

Siendo fc la frecuencia de resonancia en caja cerrada. Este valor suele ser de varias decenas de hertzios. Si fc = 60 Hz, la zona plana de la respuesta llegaría hasta poco más de los 600 Hz.

Impedancia eléctrica de entrada. Es la relación compleja (módulo y fase) entre la tensión en bornes del altavoz y la corriente que circula por él. También se puede definir como la resistencia eléctrica que "ve" el equipo anterior. La impedancia eléctrica de entrada varía mucho con la frecuencia, sobre todo en torno a la frecuencia de resonancia del altavoz.

Gráfica real del módulo de la impedancia de entrada de un altavoz electrodinámico de radiación directa

Frecuencia de resonancia. Es es la frecuencia donde el sistema mecánico entra en resonancia. Se debe especificar el valor de la frecuencia para la cual el módulo de la impedancia eléctrica de entrada tiene su primer máximo. En el caso de la figura superior la frecuencia de resonancia está en 45 Hz.

Impedancia nominal. Para facilitar los cálculos de instalaciones y equipos, y para trabajar con un dato único y no una compleja gráfica, el fabricante da el valor de la impedancia nominal. Este valor suele ser de 4W, 6W, 8W ó 16W. Este valor se toma de la zona plana que hay tras la frecuencia de resonancia, en la gráfica de la impedancia eléctrica de entrada; aunque se admite una variación de hasta el 20%.

En la gráfica superior, la zona plana se encuentra entre los 150 y los 400 Hz. y el valor es de 10W, con lo que se puede decir, incluyendo el margen del 10%, que la impedancia nominal del altavoz es de 8W.

Potencia eléctrica de pico o musical. Es la potencia eléctrica que el altavoz es capaz de disipar con una señal de prueba de ruido rosa filtrado (simulando a señal musical) sin sufrir daños permanentes. La duración de la prueba es de un segundo y se repite 60 veces a intervalos de un minuto. El valor de la potencia se calcula sobre el valor nominal de la impedancia.

Potencia eléctrica nominal o RMS. Es la potencia eléctrica que el altavoz es capaz de disipar con una señal de prueba de ruido rosa (que simula un programa musical) sin sufrir daños permanentes. La duración de la prueba es de un minuto y se repite 10 veces a intervalos de dos minuto.

Potencia continua sinusoidal. Es la potencia eléctrica que el altavoz es capaz de disipar con una señal de prueba, que es un barrido continuo dentro del margen de trabajo de señal senoidal, sin sufrir daños mecánicos o térmicos. La duración de la prueba es de un 100 horas consecutivas. Este dato no suele ser facilitado, ya que los dos anteriores aportan suficiente información.

La norma usada en cada caso para la medida, determina el espectro de la señal banda ancha, el tipo de señal (ruido rosa generalmente) y el tiempo de duración de la prueba. Normas conocidas son la normas AES, IEC, EIA... El valor de potencia eléctrica que se está aplicando al altavoz se calcula midiendo la tensión eficaz en bornes del altavoz para el valor de impedancia nominal.

Fórmula empleada para calcular la potencia eléctrica consumida

Sensibilidad. Se define como el nivel de presión sonora (NPS) medido a 1 m de distancia en la dirección del eje de mayor radiación del altavoz, cuando es excitado con un 1 W de potencia eléctrica, medida esta sobre su impedancia nominal. La señal que se utiliza es de banda ancha, preferiblemente un ruido rosa, cuyo espectro se parece más a la señal musical o vocal. Se puede dar el dato para radiación esférica o hemisférica (montado en pantalla infinita). Entre dos altavoces de iguales características de respuesta en frecuencia, potencia nominal, impedancia de entrada y directividad, es preferible el que mayor sensibilidad tenga.

Esta medida, así como la mayoría de las medidas de sonido, se han de hacer sin que influyan las posibles reflexiones del sonido en elementos cercanos, lo que adulteraría la medida. Para evitar estas reflexiones se usan "cámaras anecoicas" que están construidas con un diseño y materiales que hacen que no existan reflexiones en su interior, ni se cuelen ruidos externos.

Fotografía del interior de una cámara anecoica

Las pasarelas y los elementos del centro de la cámara son usados para colocar las fuentes a medir y los dispositivos de medida.

Rendimiento y eficiencia. El rendimiento es el resultado de la división de la potencia acústica radiada por el altavoz, entre la potencia eléctrica consumida en el altavoz. Se suele dar en porcentaje. La eficiencia también se calcula de igual modo, y sus valores se suelen dar en unidades. Sin embargo la forma de calcular las potencias acústica y eléctrica para rendimiento y eficiencia son diferentes, ya que el rendimiento incluye las pérdidas mecánicas del sistema. Es decir, la resistencia al movimiento de la suspensión del diafragma.

El dato del rendimiento es el más ajustado a la realidad de los dos. Tanto el rendimiento como la eficiencia son valores que varían con la frecuencia, igual que la resistencia eléctrica de entrada. En ambos casos y para ciertas frecuencias los valores pueden superar el valor máximo de 100% o 1 respectivamente. A pesar de la fidelidad de estos parámetros a la realidad, para saber si un altavoz radiará mucha energía acústica, es más cómodo fijarse en su sensibilidad. Un altavoz poco sensible necesitará consumir más energía eléctrica que otro muy sensible, para lograr el mismo nivel de presión sonora.

Directividad. Es la variación del nivel de presión sonora a una distancia fija, en función del ángulo de giro del altavoz. La directividad se especifica mediante gráficas para bandas de tercio de octava de ruido rosa, con distintas frecuencias centrales y para giros de 10º a 15º. Las bandas que se usan tienen las siguientes frecuencias centrales: 125Hz, 250Hz, 500Hz, 1KHz, 2KHz, 4 KHz, 8KHz y 16KHz. El registro de estas gráficas se hace situando el altavoz en un banco giratorio, se reproduce una banda concreta y se mide el NPS a una distancia fija, se va girando el altavoz en el plano horizontal de 15 en 15 grados y midiendo la caída de NPS con respecto al valor de NPS a 0º. Se repite el procedimiento para cada banda. Si el altavoz es de simetría circular, la directividad vertical y horizontal será la misma. Si no lo es, habrá que hacer el mismo procedimiento girando el altavoz en el plano vertical.

Ejemplo de diagrama de directividad horizontal con cuatro frecuencias significativas

Las curvas de directividad suelen ser simétricas respecto al eje de radiación, al menos en el plano del que se trate. Es decir, en directividad horizontal, se dan iguales pérdidas a 300º que a 60º para una misma frecuencia. Por este motivo y para no emborronar la gráfica, sólo se representa un lado de la curva para cada frecuencia, entendiendo que el lado que falta es simétrico respecto al eje de 0º-180º. Si el sistema tiene simetría de revolución, la directividad vertical será igual.

Ancho de haz. Es un valor que se expresa en grados sexagesimales (de 0º a 360º), e indica la porción del espacio situado frente al altavoz, horizontal o vertical, en donde la caída del NPS respecto al eje es menor de 6dB. El ancho de haz se mide de lado a lado del haz. Normalmente se suele dar el valor de ancho de haz a -6dB, aunque a veces se da para -3dB; siempre se especifica. Este dato es muy útil para realizar proyectos de refuerzo sonoro, para distribuir los altavoces de forma que toda la audiencia quede cubierta con un nivel suficiente. Valores típicos de ancho de haz para bocinas son 20º, 40º, 60º, 90º ó 120º. 

Ejemplo del ancho de haz de una bocina

Los cálculos de recubrimiento basados en los datos de ancho de haz, son sólo aproximados, ya que no se tienen en cuenta las pérdidas de nivel con la distancia, es decir, las pérdidas por divergencia esférica. Las isobaras son superficies tridimensionales que tienen en cuenta tanto la direcitividad del altavoz como las pérdidas por divergencia esférica. El cálculo de recubrimientos con isobaras en superficies complejas requiere cálculos basados en computador, a no ser para calcular niveles en puntos concretos de la audiencia..

Índice de directividad (ID). Es la relación, expresada en dB, entre la intensidad acústica radiada por el altavoz medida en el eje, y la intensidad acústica radiada por un altavoz omnidireccional (que radia igual en todas direcciones), medido en las mismas condiciones. Un altavoz omnidireccional (concepto sólo teórico), tiene un índice de directividad de valor uno. Cuanto más directivo sea un altavoz, mayor será su ID.

Los datos sobre directividad son muy importantes, ya que en la mayoría de las aplicaciones profesionales, el oyente o los oyentes no se sitúas únicamente en el eje de los altavoces que reproducen el sonido.

Distorsión armónica (THD%). La definición de esta medida se da en el apartado Equipos de audio > Calidad de audio. Sólo queda decir que en el caso de altavoces, se hace la medida para distintas potencias de trabajo del altavoz, ya que a mayor potencia, mayor distorsión.

Arriba

Siguiente: Altavoces 2/2

 

Inicio